|
Up
|
|
|
|
|
5倍提速精度反超LiDAR.m4a
|
|
|
|
|
Copilot4D_如何让自动驾驶预知未来三秒.m4a
|
|
|
|
|
DriveX:世界模型让自动驾驶拥有直觉.m4a
|
|
|
|
|
Kirby et al. - 2025 - LOGen Toward lidar object generation by point diffusion-LOGen:一种基于扩散的激光雷达物体生成模型.mp3
|
|
|
|
|
Liang et al. - 2025 - LiDARCrafter Dynamic 4D World Modeling from LiDAR Sequences-LiDARCrafter_+4D+LiDAR+World+Model.mp3
|
|
|
|
|
LiDAR Data Engines Survey_ Architectural Evolution from GANs to World Models-LiDAR+数据引擎的架构演进.mp3
|
|
|
|
|
LiDAR+Data+Engine+方法综述.mp3
|
|
|
|
|
LiDAR困境靠AI语言解决.m4a
|
|
|
|
|
Liu et al. - 2025 - La La LiDAR Large-Scale Layout Generation from LiDAR Data-La+La+LiDAR_+Controllable+LiDAR+Scene+Generation.mp3
|
|
|
|
|
Liu et al. - 2025 - Veila Panoramic LiDAR generation from a monocular RGB image-Veila:单目+RGB+图像生成全景+LiDAR.mp3
|
|
|
|
|
Martyniuk et al. - 2025 - LiDPM Rethinking point diffusion for lidar scene completion-LiDPM:提升语义+KITTI+场景完成效果.mp3
|
|
|
|
|
Nakashima and Kurazume - 2021 - Learning to drop points for LiDAR scan synthesis《基于生成对抗网络的激光雷达数据生成》.mp3
|
|
|
|
|
Nakashima et al. - 2022 - Generative range imaging for learning scene priors of 3D LiDAR data.mp3
|
|
|
|
|
Nunes et al. - 2024 - Scaling diffusion models to real-world 3D LiDAR scene completion-将+3D+激光雷达点云完成.mp3
|
|
|
|
|
Nunes et al. - 2025 - Towards generating realistic 3D semantic training data for autonomous driving-生成逼真的+3D+语义训练数据.mp3
|
|
|
|
|
Ran et al. - 2024 - Towards realistic scene generation with LiDAR diffusion models-LiDAR+Diffusion+Models+for+Scene+Generation.mp3
|
|
|
|
|
Shi et al. - 2025 - DriveX Omni scene modeling for learning generalizable world knowledge in autonomous driving-DriveX:一种自监督的世界模型.mp3
|
|
|
|
|
SVD模型:华丽视觉如何误导具身智能.m4a
|
|
|
|
|
ViDAR省下自动驾驶一半标注成本.m4a
|
|
|
|
|
Wu et al. - 2025 - WeatherGen A unified diverse weather generator for LiDAR point clouds via spider mamba diffusion-WeatherGen:统一的多样化天气激光雷达数据生成框架.mp3
|
|
|
|
|
Xie et al. - 2024 - X-Drive Cross-modality consistent multi-sensor data synthesis for driving scenarios-X-DRIVE:联合生成多模态数据.mp3
|
|
|
|
|
Xiong et al. - 2023 - UltraLiDAR Learning compact representations for LiDAR completion and generation-UltraLiDAR:实现激光雷达的完备与生成.mp3
|
|
|
|
|
Yan et al. - 2024 - OLiDM Object-aware LiDAR diffusion models for autonomous driving-OLiDM:生成高质量激光雷达点云.mp3
|
|
|
|
|
Yang et al. - 2023 - Visual point cloud forecasting enables scalable autonomous driving-视觉点云预测助力自动驾驶规模化.mp3
|
|
|
|
|
Zhang et al. - 2024 - Copilot4D Learning unsupervised world models for autonomous driving via discrete diffusion-Copilot4D:自动驾驶中点云预测.mp3
|
|
|
|
|
Zhao et al. - 2025 - Diffusion distillation with direct preference optimization for efficient 3D LiDAR scene completion-《Distillation-DPO:加速激光雷达场景完成》.mp3
|
|
|
|
|
Zhou et al. - 2025 - HERMES A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation-HERMES:统一自动驾驶世界模型.mp3
|
|
|
|
|
Zhu et al. - 2025 - SPIRAL Semantic-aware progressive LiDAR scene generation and understanding-SPIRAL:语义感知的激光雷达生成模型.mp3
|
|
|
|
|
Zyrianov et al. - 2022 - Learning to Generate Realistic LiDAR Point Clouds-LiDARGen:一种新的激光雷达点云生成模型.mp3
|
|
|
|
|
Zyrianov et al. - 2024 - LidarDM Generative LiDAR simulation in a generated world-LidarDM:一种新颖的激光雷达生成模型.mp3
|
|
|
|
|
世界模型:通过闭环任务成功评估.wav
|
|
|
|
|
导演式生成自动驾驶极限驾校.m4a
|
|
|
|
|
引言:为什么需要 LiDAR Data Engines?-LiDAR+数据引擎的发展与分类.mp3
|
|
|
|
|
激光雷达扩散模型LiDM如何创造3D驾驶场景.m4a
|
|
|
|
|
训练AI_假数据比真的更强.m4a
|
|
|
|